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Instituto de Matemática e Estatı́stica - USP

1 Ramsey’s theorem

The field of combinatorics has Ramsey’s theorems as
cornerstones. In its essence, these are results about
finding a substructure that satisfies some regularity
condition when given a large enough structure. This
“regularity” is expressed through the concept of col-
orings: Let A be a set, we define [A]n to be the
set of all n-element subsets of A, for some positive
integer n. And a k-coloring of [A]n is a function
c : [A]n → {0, 1, ..., k − 1}, for k ≥ 1. Equivalently,
a coloring can be seen as a finite partition of [A]n

[A]n = c−1(0) ∪ c−1(1) ∪ ... ∪ c−1(k − 1).

As an example, [{0, 1, 2, 3, 4, 5}]2 can be thought of
as a graph and a coloring could be represented as the
coloring (in the usual sense) of the graph’s edges.

In this example, the “regular substructure” we seek
is a subgraph with all it’s edges of the same color. Let
B ⊆ A, we call B monochromatic if [B]n is a subset
of c−1(r) for some r ∈ {0, ..., k − 1}.

Our interest, however, lies in the version of Ram-
sey’s theorem for an infinite set A.

Theorem 1 (Ramsey). For any countable setA, n ≥ 1
and any finite k-coloring c of the family [A]n, there is
an infinite subset B ⊆ A such that B is monochro-
matic.

Many areas of mathematics have been influenced by
attempts to find further results of this kind. We focus
on how we may extend this theorem to reach the set
of the countable subsets of A instead of [A]n.

To simplify our notation we’ll work with the set of
natural numbers N instead of an arbitrary countable
set A. In this scenario [N]ℵ0 will represent the set of
all countable subsets of N.

Assuming the Axiom of Choice, an improvement of
Ramsey’s theorem to include the possibility of [N]ℵ0

is not possible. As we are working in ZFC we omit
the necessity of the Axiom of Choice.

Lemma 2. Given any countable set A and a positive
integer k there is a k-coloring such that there is no
infinite subset B ⊆ A where [B]ℵ0 is monochromatic.

An alternative result of this kind comes to us, with
stronger requirements than Theorem 1, in the form of
the Galvin-Prikry theorem.

2 An advance through topology

To get to the Galvin-Prikry we will work our way
towards Ellentuck’s theorem, a result with which
started the interplay between Ramsey Theory and
Topology [1]. As may be expected, we begin by con-
structing a topological space.

The usual topology of [N]ℵ0

By defining an onto function F : [N]ℵ0 → 2N where
F (A) = χA, we relate [N]ℵ0 to a subset of 2N, the

space of functions N → 2. Assuming that 2 = {0, 1}
has the discrete topology we have the product topol-
ogy in 2N as a natural byproduct. This topology then
induces a topology in F ([N]ℵ0) and taking the pre-
image of these sets we have a topology in [N]ℵ0. We
will call this the usual topology of [N]ℵ0 and denote
this topological space by ([N]ℵ0, τ ).
Proposition 3. ([N]ℵ0, τ ) is a separable completely
metrizable space.

With this space in mind, we say that a set A is a
Borel set if it is in the smallest σ-algebra containing
the open sets. It is in this context where we find the
condition our coloring has to obey to satisfy a theo-
rem similar to Ramsey’s.
Theorem 4 (Galvin-Prikry). Let

[N]ℵ0 = P0 ∪ ... ∪ Pk−1

be a partition where P0, P1, ..., Pk−1 are Borel sets.
Then there exists a countable subset A ⊆ N such that
[A]ℵ0 ⊆ Pr for some r ∈ {0, 1, ..., k − 1}.

Ellentuck’s topology

Ellentuck’s approach begins with the introduction of
another topology. Let a ⊆ N be finite and A ⊆ N be
infinite such that max(a) < min(A) (we denote this
by a < A). We define

[a,A] := {S ∈ [N]ℵ0 : a ⊆ S ⊆ a ∪ A}.

The family of sets [a,A], for all a < A, forms the
basis for what we shall call the Ellentuck topology.

Intuitively, we may think of the basic open sets [a,A]
in this topology as being of the following form:

{n1, n2, n3, ..., nk︸ ︷︷ ︸
all the elements of a

, nk+j1, nk+j2, nk+j3, ...︸ ︷︷ ︸
infinite elements of A

}.

An easy consequence of this definition is:
Lemma 5. The Ellentuck topology is finer than the
usual topology in [N]ℵ0.

In this environment it will be useful to have a no-
tion of “almost open sets”, we formalize this in what
follows.
Definition 6. Let (X, τ ) be a topological space, we
say that a set B ⊆ X has the Baire property (BP) if
there is an open set U ∈ τ such that

B∆U := (B \ U) ∪ (U \B) is meager

A general fact that follows is that the family of sets
with the Baire property forms a particular σ-algebra.
Proposition 7. Let (X, τ ) be a topological space.
Then the set of all subsets with the Baire property is
the σ-algebra generated by the set of all open sets and
meager sets.

Ramsey’s sets

Going back to the combinatorial aspects of our stud-
ies, we define two concepts that relate partitions to
open sets. In these definitions it will be convenient to
denote ∼ X := [N]ℵ0 \X .
Definition 8. Let X be a subset of [N]ℵ0, we say that
X is a Ramsey set if there is some set [∅, A] such that
either
1. [∅, A] ⊆ X , or
2. [∅, A] ⊆ ∼ X .

Definition 9. Let X be a subset of [N]ℵ0, we say that
X is a completely Ramsey set if, for any set [a,A]
there is some subset B ⊆ A such that either

1. [a,B] ⊆ X , or

2. [a,B] ⊆ ∼ X .

Proposition 10. Every open set in the Ellentuck topol-
ogy is completely Ramsey.

Lemma 11. Every nowhere dense set X in the Ellen-
tuck topology is completely Ramsey.

We can then extend this result to meager sets. In
fact, this comes as a consequence of the fact that in
the Ellentuck topology a set is meager if, and only if,
it is nowhere dense.

Lemma 12. Every meager set X in the Ellentuck
topology is completely Ramsey.

In fact, from Proposition 10 and Lemma 12 it fol-
lows that all sets with the Baire property are com-
pletely Ramsey.

Ellentuck’s theorem

With what we developed in the last subsection, we
have enough to present the main results. The first
being that the implication discussed in the previous
subsection is actually an equivalence.

Theorem 13 (Ellentuck). For any X ⊆ [N]ℵ0, X is
completely Ramsey if, and only if, X has the Baire
property in the Ellentuck topology.

The Galvin-Prikry theorem now follows easily:

Proof of Theorem 4. First, let us consider k = 1. Then
[N]ℵ0 = P0 ∪ P1 and P1 = ∼ P0. Since P0 is a Borel
set, it is in the σ-algebra of open sets for the Ellentuck
topology (Lemma 5). By Proposition 7, P0 has the
Baire property and by Theorem 13, it is completely
Ramsey. Since [N]ℵ0 = [∅,N], there is some infinite
B ⊆ N such that either [B]ℵ0 = [∅, B] is a subset of
P0 or P1.

Now, suppose it is true for some k ≥ 1, we will that
it is also true for k + 1: We may rewrite any given
partition

[N]ℵ0 = P0 ∪ ... ∪ Pk−1 ∪ Pk

as [N]ℵ0 = Q∪Pk. As this is a 2-coloring, by what was
previously proved, there is some infinite B ⊆ N such
that either [B]ℵ0 ⊆ Pk (in which case we are done)
or [B]ℵ0 ⊆ Q (where we get the k case, and are also
done).
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